DISCLAIMER

“GED®
is a registered trademark of the American Council on Education (ACE) and
administered exclusively by GED Testing Service LLC under license. This material [or
content] is not endorsed or approved by ACE or GED Testing Service.”

Tuesday, June 21, 2016

GED Science Lesson: Major Elements in Biology




Full Wikipedia Article

Amino acids and proteins[edit]

Proteins are made of amino acids arranged in a linear chain joined together by peptide bonds. Many proteins are enzymes that catalyze the chemical reactions in metabolism. Other proteins have structural or mechanical functions, such as those that form the cytoskeleton, a system of scaffolding that maintains the cell shape.[6] Proteins are also important in cell signalingimmune responsescell adhesionactive transport across membranes, and the cell cycle.[7] Amino acids also contribute to cellular energy metabolism by providing a carbon source for entry into the citric acid cycle (tricarboxylic acid cycle),[8] especially when a primary source of energy, such asglucose, is scarce, or when cells undergo metabolic stress.[9]

Lipids[edit]

Lipids are the most diverse group of biochemicals. Their main structural uses are as part of biological membranes both internal and external, such as the cell membrane, or as a source of energy.[7] Lipids are usually defined as hydrophobicor amphipathic biological molecules but will dissolve in organic solvents such as benzene or chloroform.[10] The fats are a large group of compounds that contain fatty acids and glycerol; a glycerol molecule attached to three fatty acid esters is called a triacylglyceride.[11] Several variations on this basic structure exist, including alternate backbones such as sphingosine in the sphingolipids, and hydrophilic groups such as phosphate as in phospholipidsSteroids such as cholesterolare another major class of lipids.[12]

Carbohydrates[edit]

The straight chain form consists of four C H O H groups linked in a row, capped at the ends by an aldehyde group C O H and a methanol group C H 2 O H.  To form the ring, the aldehyde group combines with the O H group of the next-to-last carbon at the other end, just before the methanol group.
Glucose can exist in both a straight-chain and ring form.
Carbohydrates are aldehydes or ketones, with many hydroxyl groups attached, that can exist as straight chains or rings. Carbohydrates are the most abundant biological molecules, and fill numerous roles, such as the storage and transport of energy (starchglycogen) and structural components (cellulose in plants, chitin in animals).[7] The basic carbohydrate units are called monosaccharides and include galactosefructose, and most importantly glucose. Monosaccharides can be linked together to form polysaccharides in almost limitless ways.[13]

Nucleotides[edit]

The two nucleic acids, DNA and RNA, are polymers of nucleotides. Each nucleotide is composed of a phosphate attached to a ribose or deoxyribose sugar group which is attached to a nitrogenous base. Nucleic acids are critical for the storage and use of genetic information, and its interpretation through the processes of transcription and protein biosynthesis.[7] This information is protected byDNA repair mechanisms and propagated through DNA replication. Many viruses have an RNA genome, such as HIV, which uses reverse transcription to create a DNA template from its viral RNA genome.[14] RNA in ribozymes such as spliceosomes and ribosomes is similar to enzymes as it can catalyze chemical reactions. Individual nucleosides are made by attaching a nucleobase to a ribosesugar. These bases are heterocyclic rings containing nitrogen, classified as purines or pyrimidines. Nucleotides also act as coenzymes in metabolic-group-transfer reactions.[15]

Coenzymes[edit]


Structure of the coenzyme acetyl-CoA.The transferable acetyl group is bonded to the sulfur atom at the extreme left.
Main article: Coenzyme
Metabolism involves a vast array of chemical reactions, but most fall under a few basic types of reactions that involve the transfer of functional groups of atoms and their bonds within molecules.[16] This common chemistry allows cells to use a small set of metabolic intermediates to carry chemical groups between different reactions.[15] These group-transfer intermediates are called coenzymes. Each class of group-transfer reactions is carried out by a particular coenzyme, which is the substrate for a set of enzymes that produce it, and a set of enzymes that consume it. These coenzymes are therefore continuously made, consumed and then recycled.[17]
One central coenzyme is adenosine triphosphate (ATP), the universal energy currency of cells. This nucleotide is used to transfer chemical energy between different chemical reactions. There is only a small amount of ATP in cells, but as it is continuously regenerated, the human body can use about its own weight in ATP per day.[17] ATP acts as a bridge betweencatabolism and anabolism. Catabolism breaks down molecules and anabolism puts them together. Catabolic reactions generate ATP and anabolic reactions consume it. It also serves as a carrier of phosphate groups in phosphorylation reactions.
vitamin is an organic compound needed in small quantities that cannot be made in cells. In human nutrition, most vitamins function as coenzymes after modification; for example, all water-soluble vitamins are phosphorylated or are coupled to nucleotides when they are used in cells.[18] Nicotinamide adenine dinucleotide (NAD+), a derivative of vitamin B3 (niacin), is an important coenzyme that acts as a hydrogen acceptor. Hundreds of separate types of dehydrogenases remove electrons from their substrates and reduce NAD+ into NADH. This reduced form of the coenzyme is then a substrate for any of the reductases in the cell that need to reduce their substrates.[19] Nicotinamide adenine dinucleotide exists in two related forms in the cell, NADH and NADPH. The NAD+/NADH form is more important in catabolic reactions, while NADP+/NADPH is used in anabolic reactions.

No comments:

Post a Comment